# Ray-tracing

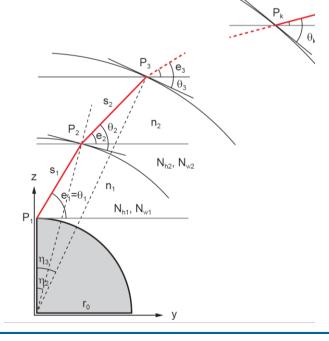
#### **Daniel Landskron**





# **Troposphere modeling**

- Tropospheric delay usually modeled with delays in zenith direction and mapping functions:
  - Dependence on elevation:


$$\Delta L_0(e) = \Delta L_h^z * mf_h(e) + \Delta L_w^z * mf_w(e)$$

– Dependence on azimuth:

$$\Delta L(a,e) = \Delta L_0(e) + mf_g(e) * [G_N \cos(a) + G_E \sin(a)]$$

## **Ray-tracing**

- Ray-tracing through Numerical Weather Models (NWMs) determines the exact tropospheric delay along a certain ray path
- Ray path dependent on refractivity along its way
- NWMs by ECMWF:
  - Operational, Forecast, Reanalysis
  - 6 h resolution
  - 1°x1° horizontal resolution
  - 25 pressure levels



## Usage of ray-traced delays in VieVS

- Download desired ray-traced delays from: <a href="http://vmf.geo.tuwien.ac.at/trop\_products/VLBI/RAYTR/RADIATE/">http://vmf.geo.tuwien.ac.at/trop\_products/VLBI/RAYTR/RADIATE/</a>
- Move them into the /TRP/RAYTRACING\_DATA/ directory
  - Yearly subdivision is optional
- In Models Troposphere set the radio button to from raytracing
- Run VieVS

