Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS)

Andreas Hellerschmied1, J. Böhm1, R. Haas2, J. Kodet3, A. Neidhardt3, L. Plank4

1 Technische Universität Wien, Austria
2 Chalmers University of Technology, Onsala Space Observatory, Sweden
3 Technische Universität München, Geodetic Observatory Wettzell, Germany
4 University of Tasmania, Australia
Motivation for geodesy:

- Establish inter-technique ties in space
- Improved future ITRF realizations

„Co-Location in space“ (Plank L, 2014)
Framework conditions

Standard VLBI

Natural radio sources (quasars)
- At an infinite distance
- Parallel view directions \(\vec{k} \)
- Fixed points in the sky
- S/X-band

Satellite observations

Artificial signal sources
- In the Earth’s near field
- Different view directions \((\vec{k}_1 \neq \vec{k}_2) \)
- Moving fast
- e.g. L-band for GNSS
Suitable observation plans („Schedules“) are required
• Defining the time sequence of a VLBI experiment
• Generated by dedicated VLBI scheduling software
 • SKED (Gipson J, 2012)
 • VIE_SCHED (Sun J, 2014)

➔ Problem: Available scheduling programs for geodetic VLBI did not support satellites as radio sources routinely.

➔ Idea: Development of a satellite scheduling module for the Vienna VLBI Software (VieVS; Böhm et al., 2012).
VieVS satellite scheduling module

GUI of the VieVS satellite scheduling module

Station network

Satellites

Observation parameter

Graphics & Visibility information

Time & duration

User-interface

Input data

Generation of VEX files

Catalog files

Configuration files

TLE datasets

VEX files
Satellite observation conditions

- Conditions for the temporal availability of satellites as observation targets:
 - Common visibility?
 - Sun distance?
 - Antenna slew speeds?

 - Tracking of the **cable wrap**
 - Calculation of slew times between scans
 - Check cable wrap limits
VEX Files

- VEX = Standard file format for VLBI observation plans
- Provide all required information to carry out a VLBI session
 - Observation sequence, source positions, receiver setup, etc...

- “Stepwise” satellite tracking with VEX files
 - Sequence of discrete positions (topo. Ra/Dec)
 - Feasible for standard VLBI antennas

- “VEX 2.0” (https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2)
 - Inclusion of TLE orbit data
 - Improved satellite tracking in combination with satellite tracking features of the Field System
Combined schedules

- **Combination of quasar- and satellite-scans** in one schedule
- New possibilities:
 - Satellite positions in the CRF, reveal gaps in the local ties, etc…
- Observation restrictions due to limited receiver capabilities
 - e.g. S/X- versus L-band (GNSS)

Ground tracks of three GLONASS satellites & quasar positions for the epoch 2015-08-30 13:01:18 UTC
Future scheduling strategies

- Open questions:
 - How to **combine satellite and quasar observations** reasonably to improve the derived geodetic parameters?
 - Scan sequence, source distribution, etc…
 - How to handle station-dependent restrictions in the observable frequency bands?
 - etc…

➡️ Next step: **Combination of scheduling and simulation/analysis (Plank, 2014)** tools in VieVS to investigate suitable scheduling strategies for satellites.

Possible S/X- & L-band observation configuration on the baseline Onsala-Wettzell
Experiments: WTZ – ONSALA85

• Scheduled with

• Onsala, Sweden:
 • R. Haas
 • 25 m antenna, L-band feed

• Wettzell, Deutschland
 • A. Neidhardt
 • 20 m antenna, S/X-band feed

→ GLONASS satellites
 • L1 band signals
 (1602.56 - 1615.5 MHz)

Data correlation and preliminary results

→ Next talk: R. Haas et al., GLONASS-VLBI: Onsala-Wettzell test observations

• Four test sessions, one hour duration each
 • 16. January 2014: G140116a, G140116b
 • 21. January 2014: G140121a, G140121b

(Hellerschmied et al., 2014)
Summary & Outlook

• **VieVS Satellite Scheduling Module**
 - Planning of real VLBI satellite observations
 - Generation of schedule files (VEX Format)
 - Combination of quasar- and satellite scans
 - Successfully applied for test observations in January 2014
 - No automatic source selection so far

• Planned **simulation studies** with VieVS based on realistic schedules to find suitable scheduling strategies for VLBI satellite observations
Questions?

Contact:
andreas.hellerschmied@geo.tuwien.ac.at

References:

Hellerschmied et al. (2014), Observing satellites with VLBI radio telescopes – practical realization at Wettzell, 8th IVS General Meeting, Shanghai, March 2014.

Kodet J et al. (2014), Co-locations of Space Geodetic Techniques on Ground and in Space, 8th IVS General Meeting, Shanghai.

Plank L (2014), Precise station positions from VLBI observations to satellites: a simulation study, J Geod, 88: 659–673.

Sun J et al. (2014), New VLBI2010 scheduling strategies and implications on the terrestrial reference frame, J Geod, 88: 449-461