Abbondanza, C. and Sarti, P. (2010). Eects of illumination functions on the computation of gravity-dependent signal path variation models in primary focus and Cassegrainian VLBI telescopes. J. Geod., 84, 515-525.
Altamimi, Z., Collilieux, X. and Metivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. J. Geod., 85, 457-473.
Andersen, O.B. (2006). www.spacecenter.dk/data/global-ocean-tide-model-1/.
Bare, C.C., Clark, B.G., Kellerman, K.I., Cohen, M.H. and Jauncey, D.L. (1967). Interferometry experiment with independent local oscillators. Science, 157.
Bierman, G. (1977). Factorization Methods for Discrete Sequential Estimation. Academic, New York.
Bizouard, C. and Gambis, D. (2009). The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame. In H. Drewes, ed., Geode- tic Reference Frames, Vol. 134, 265{270, IAG Symposium, Munich, Germany, 9-14 October 2006.
Böckmann, S., Artz, T. and Nothnagel, A. (2010). VLBI terrestrial reference frame contributions to ITRF2008. J. Geod., 84, 201-219.
Böhm, J. (2004). Tropospharische Laufzeitverzogerungen in der VLBI. Geowissenschaftliche Mitteilungen, 68, Schriftenreihe der Studienrichtung Vermessung
Böhm, J., Werl, B. and Schuh, H. (2006). Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-RangeWeather Forecasts operational analysis data. J. Geophys. Res., 111, doi:10.1029/2005JB003629.
Böhm, J., Heinkelmann, R. and Schuh, H. (2007). Short note: A global model of pressure and temperature for geodetic applications. J. Geod., 81, 679-683.
Böhm, J. and Schuh, H. (2007). Troposphere gradients from the ECMWF in VLBI analysis. J. Geod., 81, 403-408.
Böhm, J., Kouba, J. and Schuh, H. (2009b). Forecast vienna mapping functions 1 for realtime analysis of space geodetic observations. J. Geod., 86, 397-401.
Böhm, J., Hobiger, T., Ichikawa, R., Kondo, T., Koyama, Y., Pany, A., Schuh, H. and Teke, K. (2010). Asymmetric tropospheric delays from numerical weather models for UT1 determination from VLBI Intensive sessions on the baseline Wettzell-Tsukuba. J. Geod., 84, 319-325.
Böhm, J., Böhm, S., Nilsson, T., Pany, A., Plank, L., Spicakova, H., Teke, K. and Schuh, H. (2011). The new Vienna VLBI Software VieVS. In Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, Vol. 136, International Association of Geodesy Symposia, 31 August - 4 September 2009.
Boisits, J., Glaner, M. and Weber, R (2020). Regiomontan: A Regional High Precision Ionosphere Delay Model and Its Application in Precise Point Positioning. Sensors, 20, 2845, doi: https://doi.org/10.3390/s20102845.
Broten, N.W., Legg, T.H., Locke, J.L., McLeish, C.W., Richards, R.S., Chisholm, R.M., Gush, R.M., Yen, J.L. and Galt, J. (1967). Long baseline interferometry: A new technique. Science, 156.
Brown, G.W., Carr, T.D. and Block, W.F. (1968). Long Baseline Interferometry of SBursts from Jupiter. Astrophys. Lett., 1, 89-94.
Campbell, J. (2000). From Quasars to Benchmarks: VLBI Links Heaven and Earth. In IVS 2000 General Meeting Proceedings, 19-34, NASA/CP-2000-209893.
Capitaine, N. (2000). Definition of the celestial ephemeris pole and the celestial ephemeris origin. In Towards Models and Constants for Sub-Microarcsecond Astrometry, 153-163, U.S. Naval Observatory.
Chen, G. and Herring, T.A. (1997). Eects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. J. Geophys. Res., 102, 20489-20502.
Cohen, M.H., .L., J.D., Kellerman, K.I. and Clark, B.G. (1968). Radio interferometry at one-thousandth second of arc. Science, 162, 88-94.
Collioud, A. and Charlot, P. (2009). The Bordeaux VLBI Image database. In Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, 24-25 March 2009, Bordeaux, 19-22.
Davis, J.L., Elgered, G., Niell, A.E. and Kuehn, C.E. (1993). Ground-based measurement of gradients in the “wet” radio refractivity of air. Radio Science, 28, 1003-1018.
Dehant, V. and Mathews, P.M. (2009). Earth rotation variations. In T.A. Herring, ed., Treatise on Geophysics, Volume 3 Geodesy, Elsevier.
Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E. and Elgered, G. (1985). Geodesy by radio interferometry: Eects of atmospheric modeling errors on estimates of baseline length. Radio Science, 20, 1593-1607.
Desai, S.D. (2002). Observing the pole tide with satellite altimetry. J. Geophys. Res., 107.
Egbert, G.D. and Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183-204.
Eriksson D., and D.S. MacMillan (2014). Continental hydrology loading observed by VLBI measurements. J Geod 88. pp. 675–690. doi10.1007/s00190-014-0713-0.
Englich, S., Heinkelmann, R. and Schuh, H. (2008). Re-assessment of ocean tidal terms in high-frequency Earth rotation variations observed by VLBI. In A. Finkelstein and D. Behrend, eds., Measuring the future. Proceedings of the 5th IVS general meeting, 314{318, ISBN 978- 5-02-025332-2.
Fey, A., Gordon, D. and Jacobs, C.S., eds. (2009). The second realization of the international celestial reference frame by very long baseline interferometry. Frankfurt am Main: Verlag des Bundesamts fur Kartographie und Geodäsie, Presented on behalf of the IERS / IVS Working Group.
Gipson, J. and MacMillan, D.S. (2009). Recent modeling improvements in solve analysis. In G. Bourda, P. Charlot and A. Collioud, eds., Proceedings of the 19th European VLBI for Geodesy and Astrometry Working Meeting, 24-25 March 2009, Bordeaux, 54-57.
Gold, T. (1967). Radio method for the precise measurement of the rotation period of the earth. Science, 157, 302-304.
Haas, R. (1999). Explanatory Supplement to the Section “Antenna Deformation” of the IERS Conventions (1996). In H. Schuh, ed., DGFI Report No. 71 , 26-29.
Hawarey, M., Hobiger., T. and Schuh, H. (2005). Eects on the 2nd order ionospheric terms on VLBI measurements. Geoph. Res. Lett., 32, doi:10.1029/2005GL022729.
Heinkelmann, R. (2008). Bestimmung des atmospharischen Wasserdampfes mittels VLBI als Beitrag zur Klimaforschung. Geowissenschaftliche Mitteilungen, 82, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universitat Wien, ISSN 1811-8380 (in German).
Heinkelmann, R. and Schuh, H. (2010). Very long baseline interferometry: accuracy limits and relativistic tests. In Relativity in Fundamental Astronomy. Proceedings IAU Symposium, Vol. 261, 286-290.
Hellings, R.W. (1986). Relativistic eects in astronomical timing measurements. Astron. J., 91, 650{659, erratum, ibid. p. 1446.
Herring, T.A. (1992). Modeling atmospheric delays in the analysis of space geodetic data. In D.. Spoelstra, ed., Refraction of Transatmospheric Signals in Geodesy, 157-164, Netherlands Geodetic Commission, publications on Geodesy No. 36.
Herring, T.A., Shapiro, I.I., Clark, T.A., Ma, C., Ryan, J.W., Schupler, B.R., Knight, C.A., Lundquist, G., Shaffer, D.B., Vandenberg, N.R., Corey, B.E., Hinteregger, H.F., Rogers, A.E.E., Webber, J.C., Whitney, A.R., Elgered, G., Ronnang, B.O. and Davis, J.L. (1986). Geodesy by radio interferometry: evidence for contemporary plate motion. J. Geophys. Res., 91, 8341-8347.
Herring, T.A., Davis, J.L. and Shapiro, I.I. (1990). Geodesy by radio interferometry: The application of kalman ltering to the analysis of very long baseline interferometry data. J. Geophys. Res., 95, 12561-12581.
Herring, T.A., Mathews, P.M. and Buffett, B.A. (2002). Modeling of nutation-precession: Very long baseline interferometry results. J. Geoph. Res., 107, 2069.
Hinteregger, H.F., Shapiro, I.I., Robertson, D.S., Knight, C.A., Ergas, R.A., Whitney, A.R., Rogers, A.E.E., Moran, J.M., Clark, T.A. and Burke, B.F. (1972). Precision geodesy via radio interferometry. Science, 178, 396-398.
Hobiger, T. (2006). VLBI as a tool to probe the ionosphere. Geowissenschaftliche Mitteilungen, 75, Schriftenreihe der Studienrichtung Vermessung und Geoinformation, Technische Universit at Wien, ISSN 1811-8380.
Hobiger, T., Ichikawa, R., Koyama, Y. and Kondo, T. (2008). Fast and accurate raytracing algorithms for real-time space geodetic applications using numerical weather models. J. Geoph. Res., 113, doi:10.1029/2008JD010503.
Hofmeister, A., Böhm, J. (2017). Application of ray-traced tropospheric slant delays to geodetic VLBI analysis. J. Geod., 91:8, pp 945–964, doi:10.1007/s00190-017-1000-7
Kellermann, K.I. and Moran, J.M. (2001). The development of high-resolution imaging in radio astronomy. Annual Review of Astronomy and Astrophysics, 39, 457-509.
Klioner, S.A. (1991). General relativistic model of VLBI observables. In W.E. Carter, ed., Proc. AGU Chapman Conf. on Geodetic VLBI: Monitoring Global Change, 188-202, American Geophysical Union, Washington D.C, NOAA Technical Report NOS 137 NGS 49.
Kondo, T., Kimura, M., Koyama, Y. and Osaki, H. (2004). Current Status of Software Correlators Developed at Kashima Space Research Center. In N.R. Vandenberg and K.D. Baver, eds., International VLBI Service for Geodesy and Astrometry 2004 General Meeting Proceedings, 186-190, NASA/CP-2004-212255.
Lambert, S.B. and Le Poncin-Lafitte, C. (2009). Determining the relativistic parameter γ using very long baseline interferometry. Astron. Astrophys., 499, 031-335.
Lambert, S.B. and Le Poncin-Lafitte, C. (2011). Improved determination of by VLBI (Research Note). Astron. Astrophys., 529, doi: 10.1051/0004-6361/201016370.
Lyard, F., Lefevre, F., Letellier, T., Francis, O. (2006). Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56, 5-6
Ma, C., Arias, E.F., Eubanks, T.M., Fey, A.L., Gontier, A.M., Jacobs, C.S., Sovers, O.J., Archinal, B.A. and Charlot, P. (1998). The international celestial reference frame as realized by very long baseline interferometry. The Astronomical Journal, 116, 516-546.
MacMillan, D.S. and Ma, C. (1994). Evaluation of very long baseline interferometry atmospheric modeling improvements. J. Geophys. Res., 99, 637-651.
MacMillan, D.S. (1995). Atmospheric gradients from very long baseline interferometry observations. Geoph. Res. Letters, 22, 1041-1044.
Magnet, N. (2019). Giomo: A robust modelling approach of ionospheric delays for GNSS real-time positioning applications. PhD Thesis, Department of Geodesy and Geoinformation, Higher Geodesy, Vienna, Austria. TU Wien Library
Mathews, P.M., Dehant, V. and Gipson, J.M. (1997). Tidal station displacement. J. Geophys. Res., 102, 20469-20477.
Moran, J.M., Crowther, P.P., Burke, B.F., Barrett, A.H., Rogers, A.E.E., Ball, J.A., Carter, J.C. and Bare, C.C. (1967). Spectral line interferometry with independent time standards at stations separated by 845 kilometers. Science, 157, 676-677.
Niell, A.E., Whitney, A., Petrachenko, B., Schluter, Vandenberg, N., Hase, H., Koyama, Y., Ma, C., Schuh, H. and Tuccari, G. (2006). VLBI2010: Current and Future Requirements for Geodetic VLBI Systems. IVS Memorandum 2006-008v01 , ftp://ivscc.gsfc.nasa.gov/pub/memos/ivs-2006-008v01.pdf.
Nothnagel, A., Vennebusch, M. and Campbell, J. (2002). On Correlations Between Parameters in Geodetic VLBI Data Analysis. In N.R. Vandenberg and K.D. Baver, eds., IVS 2002 General Meeting Proceedings, 260-264.
Nothnagel, A. (2009). Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J. Geod., 83, 787-792.
Pany, A., Bohm, J., MacMillan, D.S., Schuh, H., Nilsson, T. and Wresnik, J. (2010). Monte Carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of VLBI positions. J. Geod., 85, 39-50.
Petit, G. (2000). Importance of a common framework for the realization of space-time reference systems. In Proc. IAG Symposium IGGOS, 3-7, Springer-Verlag.
Petit, G. and Luzum, B., eds. (2010). IERS Conventions 2010. Frankfurt am Main: Verlag des Bundesamts fur Kartographie und Geodasie, IERS Technical Note No. 36.
Petrachenko, B.a. (2009). Progress Report of the IVS VLBI2010 Committee: Desing Aspects of the VLBI2010 System. Tech. rep., NASA/TM-2009-214180, ftp://ivscc.gsfc.nasa.gov/pub/misc/V2C/TM-2009-214180.pdf.
Petrov, L. (1999). Steps towards phase delay VLBI. In W. Schluter and H. Hase, eds., Proceed- ings of the 13th Working Meeting on European VLBI for Geodesy and Astrometry, 144{151, Viechtach/Wettzell Feb. 12-13, 1999.
Petrov, L. and Boy, J.P. (2004). Study of the atmospheric pressure loading signal in very long baseline interferometry observations. J. Geophys. Res., 109.
Petrov, L., Gordon, D., Gipson, J., MacMillan, D., Ma, C., Fomalont, E., Walker, R.C. and Carabajal, C. (2009). Precise geodesy with the Very Long Baseline Array. J. Geod., 83, 859{876.
Plag, H.P. and Pearlman, M., eds. (2009). Global geodetic observing system: Meeting the requirements of a global society on a changing planet in 2020. Springer-Verlag Berlin Heidelberg.
Rabbel, W. and Schuh, H. (1986). The In uence of Atmospheric Loading on VLBI Experiments. J. Geoph., 59, 164-170.
Ray, R.D. (1999). A global ocean tide model From TOPEX/Poseidon altimetry: GOT99.2. NASA Technical Memorandum TM-209478, 58.
Richter, G.W. and Matzner, R.A. (1983). Second-order contributions to relativistic time delay in the parameterized post-newtonian formalism. Phys. Rev. D, 28, 3007-3012.
Rius, A., Rodriguez, J. and Campbell, J. (1987). Geodetic VLBI with Large Antennas. In J. Campbell and H. Schuh, eds., Mitt. Geod. Inst. Univ. Bonn, No. 72 , 59-67.
Rogers, A.E.E. (1970). Very long baseline interferometry with large effective bandwidth for phase delay measurements. Radio Science, 5, 1239-1247.
Savcenko, R. and Bosch, W. (2008). Eot08a - empirical ocean tide model from multi-mission satellite altimetry. Deutsches Geodatisches Forschungsinstitut (DGFI), Munchen, report No. 81.
Robertson, D.S., Carter, W.E. and Dillinger, W.H. (1991). New measurement of solar gravitational dedection of radio signals using VLBI. Nature, 349, 768-770.
Rogers, A.E.E. (1975). A receiver phase and group delay calibrator for use in very long baseline interferometry. Haystack Observatory Technical Note, Haystack Observatory, Westford, MA.
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In The use of articial satellites for geodesy, Geophys. Monogr. Ser. 15 , 274-251, Amer. Geophys. Union.
Sarti, P., Abbondanza, C., Petrov, L. and Negusini, M. (2011). Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis. J. Geod., 85, 1-8.
Schlüter, W. and Behrend, D. (2007). The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J. Geod., 81, 379-387, doi: 10.1007/s00190-006-0131-z.
Schuh, H. (1987). Die Radiointerferometrie auf langen Basen zur Bestimmung von Punktverschiebungen und Erdrotationsparametern. DGK Reihe C, Dissertationen, Heft Nr. 328.
Schuh, H. (2000). Geodetic Analysis Overview. In IVS 2000 General Meeting Proceedings, 219-229, NASA/CP-2000-209893.
Sekido, M., Takiguchi, H., Koyama, Y., Kondo, T., Haas, R., Wagner, J., Ritakari, J., Kurihara, S. and Kokado, K. (2008). Ultra-rapid UT1 measurement by e-VLBI. Earth Planets Space, 60, 865{870.
Shapiro, I.I. and Knight, C.A. (1970). Geophysical applications of long baseline radio interferometry. In L. Mansinha, D. Smylie and A. Beck, eds., Earthquake Displacement Fields and the Rotation of the Earth, 285-301, Reidel, Dordrecht.
Skurikhina, E. (2001). On Computation of Antenna Thermal Deformation in VLBI Data Processing. In D. Behrend and A. Rius, eds., 15th Workshop Meeting on European VLBI for Geodesy and Astrometry, 124.
Snajdrova, K., Bohm, J., Willis, P., Haas, R. and Schuh, H. (2005). Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J. Geod., 79, 613-623.
Sovers, O.J., Fanselow, J.L. and Jacobs, C.S. (1998). Astrometry and geodesy with radio interferometry: experiments, models, results. Reviews of Modern Physics, 70, 1393-1454.
Spicakova, H., Bohm, J., Bohm, S., Nilsson, T., Pany, A., Plank, L., Teke, K. and Schuh, H. (2010). Estimation of geodetic and geodynamical parameters with VieVS. In D. Behrend and K. Baver, eds., IVS 2010 General Meeting Proceedings, 202-206, NASA/TP- 2010-215864.
Steigenberger, P., Böhm, J. and Tesmer, V. (2009). Comparison of GMF/GPT with VMF1/ECMWF and Implications for Atmospheric Loading. J. Geod., 83, 943-951.
Takahashi, F., Kondo, T., Takahashi, Y. and Koyama, Y. (2000). Wave Summit Course: Very Long Baseline Interferometer. IOS Press, ISBN 1-58603-076-0.
Teke, K., Heinkelmann, R., Bohm, J. and Schuh, H. (2008). VLBI Baseline Length Repeatability Tests of IVS-R1 and -R4 Session Types. In A. Finkelstein and D. Behrend, eds., 'Measuring the Future', Proceedings of the 5th IVS General Meeting, 173-177, ISBN
Teke, K. (2011). Subdaily parameter estimation in VLBI data anlysis. Geowissenschaftliche Mitteilungen, Heft 87, Geowissenschaftliche Mitteilungen Heft 87, Wien.
Thompson, A.R., Moran, J.M. and Swenson, G.W.J. (1986). Interferometry and Synthesis in Radio Astronomy.. Wiley, New York.
Tierno Ros, C., J. Bohm, H. Schuh (2011). Use of GNSS-derived TEC maps for VLBI observations. In: Proceedings of the 20th Meeting of the European VLBI group for Geodesy and Astronomy. Schriftenreihe 22, Institut für Geodäsie und Geoinformation, Universität Bonn.
Tingay, S., Alef, W., Graham, D. and Deller, A.T. (2009). Geodetic VLBI correlation in software. J. Geod., 83, 1061-1069.
Titov, O. and Schuh, H. (2000). Short Periods in Earth Rotation seen in VLBI Data analysed by least-squares collocation technique. In B. Kolaczek, H. Schuh and D. Gambis, eds., IERS Technical Note 28 , 11-14, Paris Observatory.
Titov, O. (2010). VLBI2020 from Reality to Vision. In D. Behrend and K.D. Baver, eds., IVS 2010 General Meeting Proceedings, 60-64, NASA/CP-2010-215864.
vanDam, T.M. and Herring, T.A. (1994). Detection of atmospheric pressure loading using very long baseline interferometry measurements. J. Geophys. Res., 99, 4505{4517.
van Dam, T. (2010). Ncep derived 6-hourly, global surface displacements at 2.5 x 2.5 degree spacing. Data set at http://geophy.uni.lu/ncep-loading.html.
Vandenberg, N.R. (1999). Interactive/Automatic Scheduling Program. Program Reference Manual, NASA Goddard Space Flight Center / NVI Inc.
Wijaya, D.D., Boehm J., Karbon M., Krasna H., and Schuh H. (2013). Atmospheric pressure loading. Chapter 4 in Atmospheric effetcs in space geodesy. Boehm, J. and Schuh, H. (eds), Springer-Verlag Berlin Heidelberg.
Whitney, A.R., Rogers, A.E.E., Hinteregger, H.F., Knight, C.A., Lippincott, S., Levine, J.I., Clark, T.A., Shapiro, I.I. and Robertson, D.S. (1976). A very-longbaseline interferometer system for geodetic applications. Radio Science, 11, 421-432.
Wresnik, J., Haas, R., Bohm, J. and Schuh, H. (2007). Modeling thermal deformation of VLBI antennas with a new temperature model. J. Geod., 81, 423-431.